Elucidating the Determinants of Polymerase Specificity by Microfluidic-Based Deep Mutational Scanning

2019 
Engineering polymerases to synthesize artificial genetic polymers with unique backbone structures is limited by a general lack of understanding about the structural determinants that govern substrate specificity. Here, we report a high-throughput microfluidic-based approach for mapping sequence–function relationships that combines droplet-based optical polymerase sorting with deep mutational scanning. We applied this strategy to map the finger subdomain of a replicative DNA polymerase isolated from Thermococcus kodakarensis (Kod). The enrichment profile provides an unbiased view of the ability of each mutant to synthesize threose nucleic acid, which was used as a model non-natural genetic polymer. From a single round of sorting, we discovered two cases of positive epistasis and demonstrate the near inversion of substrate specificity from a double mutant variant. This effort indicates that polymerase specificity may be governed by a small number of highly specific residues that can be elucidated by deep mu...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    16
    Citations
    NaN
    KQI
    []