Dynamical ejecta of neutron star mergers with nucleonic weak processes II: Kilonova emission

2021 
The majority of existing results for the kilonova (or macronova) emission from material ejected during a neutron-star (NS) merger is based on (quasi-)one-zone models or manually constructed toy-model ejecta configurations. In this study we present a kilonova analysis of the material ejected during the first ~10ms of a NS merger, called dynamical ejecta, using directly the outflow trajectories from general relativistic smoothed-particle hydrodynamics simulations including a sophisticated neutrino treatment and the corresponding nucleosynthesis results, which have been presented in Part I of this study. We employ a multi-dimensional two-moment radiation transport scheme with approximate M1 closure to evolve the photon field and use a heuristic prescription for the opacities found by calibration with atomic-physics based reference results. We find that the photosphere is generically ellipsoidal but augmented with small-scale structure and produces emission that is about 1.5-3 times stronger towards the pole than the equator. The kilonova typically peaks after 0.7-1.5days in the near-infrared frequency regime with luminosities between 3-7x10^40erg/s and at photospheric temperatures of 2.2-2.8x10^3K. A softer equation of state or higher binary-mass asymmetry leads to a longer and brighter signal. Significant variations of the light curve are also obtained for models with artificially modified electron fractions, emphasizing the importance of a reliable neutrino-transport modeling. None of the models investigated here, which only consider dynamical ejecta, produces a transient as bright as AT2017gfo. The near-infrared peak of our models is incompatible with the early blue component of AT2017gfo.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    0
    Citations
    NaN
    KQI
    []