Comparative Study Between Different Strut’s Cross Section Shape on Minimizing Low Wall Shear Stress Along Stent Vicinity via Surrogate-Based Optimization

2017 
Endovascular stent has been employed to treat patients with intravascular diseases. Research on stent optimization is currently performed in order to find the best design in increasing the treatment efficacy. In this research, stent optimization is performed based on a finite element analysis method via Kriging surrogate model to observe the wall shear stress (WSS) conditions on the strut vicinity. Two configurations, rectangle and triangle are adopted as the cross section of a stent strut and compared to see the effects of the cross section on WSS condition. Strut gap in the range from 1 mm to 3 mm and the strut size length from 0.05 mm to 0.45 mm are considered as the design variables for each cross section. Structure contact simulation between stent and vessel wall is carried out to obtain the 5% vessel expansion. Afterward, computational fluid dynamics simulation is performed to analyze the hemodynamic effect of stent design along with wall deformation. Minimizing the percentage of low WSS area (WSS < 1 Pa) relative to the length of stent deployment area is set as the objective function of this optimization since low WSS is believed to promote some problems such as atherosclerosis. In total, 45 and 42 simulation iterations are conducted respectively for both cross sections to develop the Kriging surrogate models for efficient global optimization. Besides the prediction of the optimized configuration, broader observation on its behavior within the design range is also well predicted. The optimized configuration has 2.99 mm gap and 0.1 mm width for the rectangular strut, and 2.00 mm gap and 0.99 mm width for the triangular strut. The triangular strut has better performance in reducing the low WSS area with 14.6% of low WSS area on its optimized design, compared to 18.3% of the rectangular strut. Moreover, the triangular shape strut produces more stable performance; most design configuration with the strut width of less than 0.35 mm can keep low WSS area at the minimum value.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    4
    Citations
    NaN
    KQI
    []