Trigonal Quasicrystalline States in $30^\circ$ Rotated Double Moir\'{e} Superlattices

2021 
We study the lattice configuration and electronic structure of a double moire superlattice, which is composed of a graphene layer encapsulated by two other layers in a way such that the two hexagonal moire patterns are arranged in a dodecagonal quasicrystalline configuration. We show that there are between 0 and 4 such configurations depending on the lattice mismatch between graphene and the encapsulating layer. We then reveal the resonant interaction, which is distinct from the conventional 2-, 3-, 4-wave mixing of moire superlattices, that brings together and hybridizes twelve degenerate Bloch states of monolayer graphene. These states do not fully satisfy the dodecagonal quasicrystalline rotational symmetry due to the symmetry of the wave vectors involved. Instead, their wave functions exhibit trigonal quasicrystalline order, which lacks inversion symmetry, at the energies much closer to the charge neutrality point of graphene.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []