Designing a hierarchical nanosheet ZSM-35 zeolite to realize more efficient ethanol synthesis from dimethyl ether and syngas

2019 
Abstract In this work, a dual-catalyst bed reactor packed with the combination of hierarchical nanosheet HZSM-35 (Hi-NZ35) zeolite and CuZnAl catalyst was proposed to realize more efficient ethanol synthesis from dimethyl ether (DME) and syngas (CO+H 2 ). The nanosheet ZSM-35 (NZ35) zeolite was prepared via a direct hydrothermal synthesis route and the CuZnAl catalyst was prepared by co-precipitation method. Moreover, a series of Hi-NZ35 x zeolites were obtained from NZ35 zeolite by further treatment with varied NaOH aqueous solution using hydrothermal process (“x” means the NaOH solution concentration of 0.2-0.6 M). The catalysts properties, such as crystallinity, porosity, acidity, morphology and composition, were characterized by X-ray diffraction (XRD), N 2 adsorption-desorption, NH 3 temperature-programmed desorption (NH 3 -TPD), H 2 temperature-programmed reduction (H 2 -TPR), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). It was found that Hi-NZ35 0.4 zeolite was more effective to obtain hierarchical porosity with mesopore volume up to 0.131 cm 3  g −1 . For single DME carbonylation reaction, the NZ35 zeolite exhibited superior catalytic activity (32.2%) and stability compared with conventional ZSM-35 (CZ35) zeolite. Furthermore, improved catalytic activity (42.0%) was observed on Hi-NZ35 0.4 zeolite owing to its abundant mesoporous structure. This result revealed that the hierarchical porosity of zeolite could effectively promote the catalytic performance of zeolite for DME carbonylation reaction. For the ethanol synthesis using the optimized catalysts combination of Hi-NZ35 0.4 zeolite and CuZnAl catalyst, the DME conversion was about 47.2% with higher ethanol productivity of 840.2 mmol kg −1  h −1 .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    7
    Citations
    NaN
    KQI
    []