Renal-Clearable Molecular Probe for Near-Infrared Fluorescence Imaging and Urinalysis of SARS-CoV-2.

2021 
Despite the importance of rapid and accurate detection of SARS-CoV-2 in controlling the COVID-19 pandemic, current diagnostic methods are static and unable to distinguish between viable/nonviable virus or directly reflect viral replication activity. Real-time imaging of protease activity specific to SARS-CoV-2 can overcome these issues but remains lacking. Herein, we report a near-infrared fluorescence (NIRF) activatable molecular probe (SARS-CyCD) for detection of SARS-CoV-2 protease in living mice. The probe comprises a hemicyanine fluorophore caged with a protease peptide substrate and a cyclodextrin unit, which function as an NIRF signaling moiety and a renal-clearable enabler, respectively. The peptide substrate of SARS-CyCD can be specifically cleaved by SARS-CoV-2 main protease (Mpro), resulting in NIRF signal activation and liberation of the renal-clearable fluorescent fragment (CyCD). Such a design not only allows sensitive detection of Mpro in the lungs of living mice after intratracheal administration but also permits optical urinalysis of SARS-CoV-2 infection. Thus, this study presents an in vivo sensor that holds potential in preclinical high-throughput drug screening and clinical diagnostics for respiratory viral infections.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []