Expression of pro-inflammatory genes in human endothelial cells: Comparison of rivaroxaban and dabigatran

2016 
Abstract Introduction In addition to its central role in coagulation, thrombin is involved in non-hemostatic activities such as inflammation. Direct inhibition of thrombin activity (e.g. with dabigatran) or reducing its generation by inhibition of Factor Xa (e.g. with rivaroxaban) may therefore have anti-inflammatory effects. Materials and Methods Microarray experiments were performed to identify transcriptome-wide changes in mRNA expression levels induced by thrombin in the presence and absence of the PAR-1 antagonist vorapaxar in primary human umbilical vein endothelial cells (HUVECs). On this basis, HUVECs were incubated with recalcified plasma, with or without rivaroxaban (0.3–3000nM), dabigatran (0.3–10,000nM), or vorapaxar (0.3–10nM). Expression levels of preselected pro-inflammatory genes were quantified by real-time PCR. Results Vorapaxar abolished 67 of the 69 transcripts altered by more than twofold on addition of thrombin to HUVECs. ELAM-1, VCAM-1, ICAM-1, MCP-1, IL-8, CXCL1, and CXCL2 were among the genes most strongly induced by thrombin. Inflammatory gene expression after stimulation of thrombin generation was concentration-dependently suppressed by vorapaxar, dabigatran, and rivaroxaban. However, dabigatran at low concentrations (3–300nM) increased significantly the expression levels of CXCL1, CXCL2, IL-8, ELAM-1, MCP-1, and tissue factor. Conclusion In HUVECs, plasma-induced transcriptional changes are mediated by thrombin-induced PAR-1 activation. Rivaroxaban downregulated the expression of pro-inflammatory markers and tissue factor to a similar extent to dabigatran.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    40
    Citations
    NaN
    KQI
    []