Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolymer production from volatile fatty acids using engineered Ralstonia eutropha

2019 
Abstract One of the advantages of microbial synthesis of polyhydroxyalkanoates (PHAs) is the production of diverse polymers with different properties by the addition of different monomers, such as 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 3-hydroxyhexanoate (3HHx). Considering the number of possible variables, terpolymers can have more variations than copolymers. In this study, we aimed to synthesize the terpolymer P(3HB- co -3HV- co -3HHx) from volatile fatty acids such as propionate and butyrate using the recombinant Ralstonia eutropha strain (Re2133/pCB81), containing deletions in the phaB1 , phaB2 , and phaB3 genes, and overexpression of synthetic PHA operon ( phaC2 , phaA , phaJ ). This strain produced terpolymers depending on the ratio of two different carbon sources, namely, propionic and butyric acids; however, wild type R. eutropha could not produce the same type of polymer. The incorporation of 3-hydroxyvalerate and 3-hydroxyhexanoate monomers was confirmed by gas chromatography and H-nuclear magnetic resonance spectroscopy, and the parameters affecting the terpolymer composition were obtained based on regression. In addition, the thermal analysis showed that this terpolymer has properties different from those of the copolymer, obtained from the same composition of volatile acids. Depending on the ratio of two volatile acids, the composition of the terpolymer can be regulated resulting in different properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    19
    Citations
    NaN
    KQI
    []