Radiation hardness study for the COMET Phase-I electronics

2019 
Radiation damage on front-end readout and trigger electronics is an important issue in the COMET Phase-I experiment at J-PARC, which plans to search for the neutrinoless transition of a muon to an electron. To produce an intense muon beam, a high-power proton beam impinges on a graphite target, resulting in a high-radiation environment. We require radiation tolerance to a total dose of $1.0\,\mathrm{kGy}$ and $1\,\mathrm{MeV}$ equivalent neutron fluence of $1.0\times10^{12}\,\mathrm{n_{eq}\,cm^{-2}}$ including a safety factor of 5 over the duration of the physics measurement. The use of commercially-available electronics components which have high radiation tolerance, if such components can be secured, is desirable in such an environment. The radiation hardness of commercial electronic components has been evaluated in gamma-ray and neutron irradiation tests. As results of these tests, voltage regulators, ADCs, DACs, and several other components were found to have enough tolerance to both gamma-ray and neutron irradiation at the level we require.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    2
    Citations
    NaN
    KQI
    []