Shape-memory collagen scaffold for enhanced cartilage regeneration: native collagen versus denatured collagen

2018 
Summary Objective Nowadays, it is still questionable whether denatured collagen (DCol) can replace the native collagen (Col) as a bioactive protein in cartilage engineering. We sought to study the advantages of Col with a triple-helical structure in the collagen-based composite materials for cartilage engineering. Methods We presented new three-dimensional (3D) Col and DCol scaffolds with shape memory properties. The effects of Col and DCol scaffolds on rabbit chondrocytes' proliferation, adhesion, differentiation and interaction with matrix were investigated. Tissue compatibility was performed in a subcutaneous Sprague Dawley (SD) rat model. The repair ability of different scaffolds with chondrocytes for full-thickness articular cartilage defects in knee joints of New Zealand white rabbits were investigated. Results The results indicated that the Col scaffolds (with concentration 1.6wt% and 0.8wt%, respectively) promoted the proliferation, adhesion and redifferentiation of chondrocytes, as well as chondrocyte–matrix interaction, to a greater degree than the DCol scaffolds. In the animal experiment, the Col scaffolds filled in the defect hole significantly maintained chondrocytes function, promoted cartilage and subchondral bone regeneration, compared with the DCol scaffolds, and the scaffolds loaded with chondrocytes were better than the cell-free scaffolds, especially in the case of the Col scaffolds (1.6 wt%). Conclusions Taken together, these insights suggest that the better proliferation, adhesion and redifferentiation of chondrocytes in Col scaffolds with the triple-helical structure may contribute to the greater cartilage repair ability. Col scaffolds may be more appropriate for repairing cartilage defects than DCol scaffolds, and DCol cannot as an alternative when using collagen-based materials for cartilage engineering applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    22
    Citations
    NaN
    KQI
    []