Overcoming Electrochemical Instabilities of Printed Silver Electrodes in All-printed Ion Gel Gated Carbon Nanotube Thin Film Transistors

2019 
Silver ink is the most widely used conductive material for printing electrodes in the fabrication of all-printed ion gel gated transistors because of their high conductivity and low cost. However, electrochemical instability of printed silver electrodes is generally one of the biggest issues, whether it is in air where silver gets oxidized or in a moisture environment where electrochemical migration occurs. Notwithstanding, the electrochemical stability of printed silver electrodes in ion gel medium has not been studied so far. In this work, we studied the electrochemical instabilities of printed silver electrodes in fully printed ion gel gated single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) and developed some strategies to overcome these issues. All-printed ion gel-based p-type SWCNT TFTs were employed to investigate the impact of electrochemical instabilities on the electrical behavior of printed SWCNT TFTs. The results have demonstrated that printed silver was unstable at anodic and ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    16
    Citations
    NaN
    KQI
    []