Contact‐Engineered Electrical Properties of MoS2 Field‐Effect Transistors via Selectively Deposited Thiol‐Molecules

2018 
: Although 2D molybdenum disulfide (MoS2 ) has gained much attention due to its unique electrical and optical properties, the limited electrical contact to 2D semiconductors still impedes the realization of high-performance 2D MoS2 -based devices. In this regard, many studies have been conducted to improve the carrier-injection properties by inserting functional paths, such as graphene or hexagonal boron nitride, between the electrodes and 2D semiconductors. The reported strategies, however, require relatively time-consuming and low-yield transfer processes on sub-micrometer MoS2 flakes. Here, a simple contact-engineering method is suggested, introducing chemically adsorbed thiol-molecules as thin tunneling barriers between the metal electrodes and MoS2 channels. The selectively deposited thiol-molecules via the vapor-deposition process provide additional tunneling paths at the contact regions, improving the carrier-injection properties with lower activation energies in MoS2 field-effect transistors. Additionally, by inserting thiol-molecules at the only one contact region, asymmetric carrier-injection is feasible depending on the temperature and gate bias.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    43
    Citations
    NaN
    KQI
    []