Reconstructing neural representations of tactile space

2019 
Psychophysical experiments have demonstrated large and highly systematic perceptual distortions of tactile space. We investigated the neural basis of tactile space by analyzing activity patterns induced by tactile stimulation of nine points on a 3 x 3 square grid on the hand dorsum using functional magnetic resonance (fMRI). We used a searchlight approach within pre-defined regions of interests (ROIs) to compute the pairwise Euclidean distances between the activity patterns elicited by tactile stimulation. Then, we used multidimensional scaling (MDS) to reconstruct tactile space at the neural level and compare it with skin space at the perceptual level. Our reconstructions of the shape of skin space in contralateral primary somatosensory (SI) and motor (M1) cortices reveal that it is distorted in a way that matches the perceptual shape of skin space. This suggests that early sensorimotor areas are critical to processing tactile space perception.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    93
    References
    3
    Citations
    NaN
    KQI
    []