Impact of high field (3.0 T) magnetic resonance imaging on diagnosis of osteochondral defects in the ankle joint

2005 
Objective: To evaluate high field magnetic resonance (MR) imaging for imaging of osteochondral defects. Materials and methods: Nine osteochondral defects were simulated in three cadaveric talus specimens using a diamond drill. All specimens were examined on a 1.0 T MR unit and a 3.0 T MR unit. A T2-weighted turbo spin-echo (TSE) sequence with a 2 mm slice thickness and a 256 × 256 matrix size was used on both scanners. The visibility of the osteochondral separation and the presence of susceptibility artifacts at the drilling bores were scored on all images. Results: Compared to the 1.0 T MR unit, the protocol on the 3.0 T MR unit allowed a better delineation of the disruption of the articular cartilage and a better demarcation of the subchondral defect. Differences regarding the visualization of the subchondral defect were found to be statistically significant ( P 0.05). The average SNR was higher using 3.0 T MRI (SNR = 12), compared to 1.0 T MRI (SNR = 7). Conclusion: High field MRI enables the acquisition of images with sufficient resolution and higher SNR and has therefore the potential to improve the staging of osteochondral defects. © 2004 Elsevier Ireland Ltd. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    26
    Citations
    NaN
    KQI
    []