An immune magnetic nano-assembly for specifically amplifying intercellular quorum sensing signals

2018 
Abstract Quorum sensing (QS) enables intercellular communication after bacterial cells sense the autoinducers have reached or exceeded a critical concentration. Selectively amplifying specific bacterial “quorum” activity at a lower cell density is still a challenge. Here, we propose a novel platform of immune magnetic nano-assembly to amplify specific bacterial QS signaling via improving the bioavailability of autoinducers-2 (AI-2, furanosyl borate) from sender (wide-type, WT cells) to receiver (reporter cells). Antibody coated magnetic nanoparticle (MNPAB) was fabricated with an average diameter of 12 nm and a specific surface area of 96.5 m 2 /g. The distribution efficiency of the antibody on the surface was 25.8 μg/m 2 of magnetic nanoparticles. It was found that more than 3 × 10 8 of K12 serotype Escherichia coli ( E. coli ) reporter or WT cells were collected using 1 mg fabricated MNPAB at a saturated condition. The MNPAB not only captured E. coli WT cells but also brought them into proximity of E. coli (CT104, pCT6+pET-DsRed) reporter cells via magnetic attraction. The amplified QS signaling of the reporter cells by this immune magnetic nano-assembly was approximately 3 times higher than the nature QS signaling in cell suspension at optical density (OD) 0.08. This study foresees potential applications in amplifying specific biological QS signals based on a preprogrammed design.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    4
    Citations
    NaN
    KQI
    []