Stimulation of bone cell differentiation by low-intensity ultrasound--a histomorphometric in vitro study.

2004 
Abstract Several investigations have established a stimulatory effect of low-intensity ultrasound treatment on osteogenesis and fracture healing. The objective of this study was to examine whether the stimulatory effect of low-intensity ultrasound results in increased bone cell activity and/or proliferation. Twenty-four paired triplets of metatarsal bone rudiments of twelve 17-days-old fetal mice were dissected and divided into two groups. One group of bone rudiments was treated with pulsating low-intensity ultrasound (30 mW/cm 2 ; 1.5 MHz) for 20 min/day for a period of 3 or 6 days. The other group served as controls. After culture, the metatarsal bone rudiments were prepared for computer aided light microscopy. The following histomorphometric parameters were determined: length, width and volume of the calcified cartilage and of the bone collar, and cell number. GLM analysis demonstrated that bone collar volume and calcified cartilage percentage were significantly higher in the ultrasound-stimulated rudiments compared to untreated controls. Further, the calcified cartilage volume bordering the hypertrophic zone was significantly higher than in the center of the bone rudiment. Ultrasound treatment did not change the number of the cells. These results suggest that the stimulatory effect of low-intensity ultrasound on endochondral ossification is likely due to stimulation of bone cell differentiation and calcified matrix production, but not to changed cell proliferation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    67
    Citations
    NaN
    KQI
    []