Prevention of Microarchitectural Covert Channels on an Open-Source 64-bit RISC-V Core

2020 
Covert channels enable information leakage across security boundaries of the operating system. Microarchitectural covert channels exploit changes in execution timing resulting from competing access to limited hardware resources. We use the recent experimental support for time protection, aimed at preventing covert channels, in the seL4 microkernel and evaluate the efficacy of the mechanisms against five known channels on Ariane, an open-source 64-bit application-class RISC-V core. We confirm that without hardware support, these defences are expensive and incomplete. We show that the addition of a single-instruction extension to the RISC-V ISA, that flushes microarchitectural state, can enable the OS to close all five evaluated covert channels with low increase in context switch costs and negligible hardware overhead. We conclude that such a mechanism is essential for security.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    11
    Citations
    NaN
    KQI
    []