Self-assembly of graphene oxide/PEDOT:PSS nanocomposite as a novel adsorbent for uranium immobilization from wastewater

2019 
Abstract In recent years, water pollution caused by radionuclides has become a rising concern, among which uranium is a representative class of actinide element. Since hexavalent uranium, i.e. U(VI), is biologically hazardous with high migration, it's essential to develop efficient adsorbents to minimize the impact on the environment. Towards this end, we have synthesized a novel material (GO/PEDOT:PSS) by direct assembling graphene oxide (GO) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) through a facile ball milling method, which shows impressing performance for the immobilization of U(VI). On the basis of the batch experiments, GO/PEDOT:PSS exhibits ionic strength-independent sorption edges and temperature-promoted sorption isotherms, revealing an inner-sphere complexation with endothermic nature. The sorption kinetics can be illustrated by the pseudo-second-order model, yielding a rate constant of 1.09. × 10 −2  g mg −1 ∙min −1 , while the sorption isotherms are in coincidence with the Langmuir model, according to which the maximum sorption capacity is measured to be 384.51 mg g −1 at pH 4.5 under 298 K, indicating a monolayer sorption mechanism. In the light of the FT-IR and XPS investigations, the surface carboxyl/sulfonate group is responsible to the chelation of U(VI), indicating that the enhanced sorption capacity may be ascribed to the PSS moiety. These findings can greatly contribute to the design strategy for developing highly efficient adsorbents in the field of radioactive wastewater treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    26
    Citations
    NaN
    KQI
    []