Efficacy of serum miRNA test as a non-invasive method to diagnose nonalcoholic steatohepatitis: a systematic review and meta-analysis.

2020 
BACKGROUND Nonalcoholic steatohepatitis (NASH) is a key turning point during the progression of nonalcoholic fatty liver disease (NAFLD). Recent studies have shown that serum miRNA tests may be effective in the diagnosis of NAFLD. We conducted a meta-analysis to assess the evidence for the diagnostic efficacy of serum miRNAs in patients with NAFLD and its subtype, NASH, in particular. METHODS After a systematic review, sensitivity, specificity, and area under the receiver operating characteristics curve (AUROC) were pooled to determine the efficacy of serum miRNA test for the diagnosis of NAFLD and NASH. Clinical utility was evaluated by Fagan's nomogram and likelihood ratio scattergram. Heterogeneity was evaluated by subgroup analysis and meta-regression. Publication bias was detected by Deeks' funnel plot. RESULTS We included 27 trials containing 1775 NAFLD patients (including simple steatosis and NASH) and 586 NASH patients. For NAFLD vs NASH, the pooled sensitivity, specificity, and AUROC were (0.71 vs. 0.74), (0.76 vs. 0.85) and (0.80 vs. 0.86), respectively. Serum miRNA had high accuracy for distinguishing NASH from simple steatosis, with an AUROC of 0.91. Among the most commonly studied serum miRNAs, miRNA-34a showed moderate diagnostic accuracy for NAFLD and the lowest heterogeneity (sensitivity I2 = 5.73%, specificity I2 = 33.16%, AUROC = 0.85). According to subgroup analysis and meta-regression, a lower BMI (< 30 kg/m2) might be a crucial source of heterogeneity. CONCLUSIONS As a novel non-invasive method, serum miRNA test exhibited robust diagnostic efficacy for NASH. Among these well-studied miRNAs, miRNA-34a was more available for diagnosis. Diagnosis of NAFLD by serum miRNA is more likely to be accurate in patients with BMI ≥ 30 kg/m2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    3
    Citations
    NaN
    KQI
    []