Na+ transport processes in isolated guinea pig nasal gland acinar cells

1995 
In the dispersed acinar cells of the submucosal nasal gland in the guinea pig, intracellular Na+ concentration ([Na+]i) was measured with a microfluorimetric imaging method and the cytosolic indicator dye, sodium-binding benzofuran isophthalate, under HCO3−-free conditions. In the unstimulated condition, the [Na+]i was averaged to 12.8 ± 5.2 mM. Addition of 100 μM ouabain or removal of external K+ caused an increase in [Na+]i. Replacement of external Cl− with NO3− or addition of 0.5 mM furosemide reversibly decreased the [Na+]i. The recovery process from the reduced [Na+]i was inhibited by removal of either K+ or Cl− in the bath solution. These findings indicate the presence of a continuous influx of Na+ coupled with K+ and Cl− movement. Application of acetylcholine (ACh, 1 μM) caused an increase in [Na+]i by about 15–20 mM, which was completely inhibited by addition of 10 μM atropine. Increased cytosolic Na+ induced by ACh was extruded by the Na+-K+ pump. Removal of external Cl− and addition of 50 μM dimethylamiloride inhibited ACh-induced increase in [Na+]i by about 66% and 19%, respectively. In both unstimulated and stimulated state, Na+-K+ pump, Na-K-Cl cotransport, and Na+-H+ exchange play a critical role in maintaining intracellular electrolyte environment and in controlling a continuous secretion of nasal fluids. © 1995 Wiley-Liss, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    9
    Citations
    NaN
    KQI
    []