Development and characterization of voriconazole loaded nanoparticles for parenteral delivery

2016 
Abstract Human serum albumin (HSA) has attracted the most attention in the last decades as a new nanocarrier system of active pharmaceutical ingredients (API) due to its biocompatibility and high binding capacity to hydrophobic drugs. Voriconazole (VCZ), an antifungal agent with low water solubility, was selected to produce albumin based nanoparticles using nanoparticle albumin-bound technology (nab™-technology). Aim of our study was to study the development process of VCZ-loaded nanoparticles for parenteral drug delivery, such as homogenizing pressure, homogenizing cycle number and drug loading capacity. The main characters of nanoparticles such as particle size distribution and polydispersity index (PDI) were determined by dynamic light scattering. Six homogenization cycles at 1800 bar were ensured the acceptable PDI value (lower than 0.3) of the VCZ content nanoparticles. Optimized formulation process produced 81.2 ± 1 nm average particle size which meets the requirements of intravenous administration. Furthermore, the encapsulated concentration of VCZ was 69.7 ± 4.2% and the water solubility was over 2 times greater than the API itself which were determined by the developed HPLC method. The in vivo release behavior can be predicted from our applied in vitro dissolution study. Almost 50% of VCZ was liberated from the nanoparticles in the first 60 min.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    9
    Citations
    NaN
    KQI
    []