Oncogenic ERBB2 Aberrations and KRAS Mutations Cooperate to Promote Pancreatic Ductal Adenocarcinoma Progression

2019 
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with few therapeutic options, representing one of the great challenges in oncology. Activating KRAS mutation, occurring in >90% PDACs, is present in pancreatic intraepithelial neoplasia lesions, the precursor ductal lesions of PDAC, indicating additional genetic alterations contribute to the pathogenesis of PDAC. PDAC sequencing projects identify recurrent genomic ERBB2 alterations, mutations and amplifications, in 8.5% of PDAC patients, ranking as the top hit among the 100 receptor tyrosine kinases-encoding genes. Introduction of the ERBB2 mutations encoding protein variants S310F, S423R, R678Q, Q679L, E717D, L755S, V777L and V842I into human pancreatic epithelial cells causes oncogenic transformation, increasing ERBB2 signaling, anchorage-independent cell growth and tumor xenograft growth in nude mice, demonstrating that they are activating mutations. Interestingly, in many PDACs, mutations in ERBB2 and KRAS occur together. ERBB2 activating mutants facilitate KRAS-driven oncogenic properties. Introduction of ERBB2 mutations into KRAS-mutant PDAC cells activates ERBB2 signaling, promotes tumor growth and attenuates KRAS dependency. In contrast, a CRISPR-mediated knockout (KO) of ERBB2 in ERBB2-amplified PDAC cells inhibits ERBB2 signaling, colony formation, anchorage-independent growth and tumor xenograft formation. Finally, oncogenic ERBB2 aberrations can be abrogated by treatment with small-molecule inhibitors. ERBB2 and KRAS inhibition cooperate to suppress PDAC cell growth in vitro and to promote tumor regression in nude mice, providing a rationale for testing an anti-ERBB2 drug in combination with a KRAS inhibitor in ERBB2-mutant PDAC patients that are currently untreatable.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    6
    Citations
    NaN
    KQI
    []