Artificial intelligence-based myocardial texture analysis in etiological differentiation of left ventricular hypertrophy

2021 
Background Transthoracic echocardiography (TTE) is widely used in clinics to evaluate left ventricular hypertrophy (LVH). However, TTE is usually insufficient for the etiological diagnoses when morphological and functional features are nonspecific. With the booming of computer science and artificial intelligence (AI), previous literature has reported the application of radiomics based on cardiac magnetic resonance imaging, cardiac computed tomography and TTE in diagnosing several myocardial abnormalities, such as myocardial infarction, myocarditis, cardiac amyloidosis, and hypertrophic cardiomyopathy (HCM). In this study, we explored the possibility of using myocardial texture features in differentiating HCM, hypertensive heart disease (HHD) and uremic cardiomyopathy (UCM) based on echocardiography. To our knowledge, this was the first study to explore TTE myocardial texture analysis for multiple LVH etiology differentiation. Methods TTE images were reviewed retrospectively from January 2018 to collect 50 cases for each group of HHD, HCM and UCM. The apical four chamber view was retrieved. Seventeen first-order statistics and 60 gray level co-occurrence matrix (GLCM) features were extracted for statistics and classification test by support vector machine (SVM). Results Of all the parameters, entropy of brightness (EtBrt), standard deviation (Std), coefficient of variation (CoV), skewness (Skew), contrast7 (Cont7) and homogeneity5 (Hm5) were found statistically significant among the three groups (all P 0.50). As a result, HCM showed the most homogeneous myocardial texture, and was significantly different from HHD and UCM (all six features: P≤0.005). HHD appeared slightly more homogeneous than UCM, as only EtBrt and CoV were significant (P=0.011 and P=0.008). According to higher areas under the receiver operating characteristic curve (AUC) (>0.50), EtBrt, Std, and CoV were selected for test of classification as a combination of features. The AUC derived from SVM model was slightly improved compared with those of EtBrt, Std and CoV individually. Conclusions AI-based myocardial texture analysis using ultrasonic images may be a potential approach to aiding LVH etiology differentiation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    4
    Citations
    NaN
    KQI
    []