Vaccination with self-adjuvanted protein nanoparticles provides protection against lethal influenza challenge

2017 
Abstract Current influenza vaccines should be improved by the addition of universal influenza vaccine antigens in order to protect against multiple virus strains. We used our self-assembling protein nanoparticles (SAPNs) to display the two conserved influenza antigens M2e and Helix C in their native oligomerization states. To further improve the immunogenicity of the SAPNs, we designed and incorporated the TLR5 agonist flagellin into the SAPNs to generate self-adjuvanted SAPNs. We demonstrate that addition of flagellin does not affect the ability of SAPNs to self-assemble and that they are able to stimulate TLR5 in a dose-dependent manner. Chickens vaccinated with the self-adjuvanted SAPNs induce significantly higher levels of antibodies than those with unadjuvanted SAPNs and show higher cross-neutralizing activity compared to a commercial inactivated virus vaccine. Upon immunization with self-adjuvanted SAPNs, mice were completely protected against a lethal challenge. Thus, we have generated a self-adjuvanted SAPN with a great potential as a universal influenza vaccine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    43
    Citations
    NaN
    KQI
    []