High Temperature Shock Tube Studies on the Thermal Decomposition of O3 and the Reaction of Dimethyl Carbonate with O-Atoms

2013 
The shock tube technique was used to study the thermal decomposition of ozone, O3, with a view to using this as a thermal precursor of O-atoms at high temperatures. The formation of O-atoms was measured behind reflected shock waves by using atomic resonance absorption spectrometry (ARAS). The experiments span a T-range, 819 K ≤ T ≤ 1166 K, at pressures 0.13 bar ≤ P ≤ 0.6 bar. Unimolecular rate theory provides an excellent representation of the falloff characteristics from the present and literature data on ozone decomposition at high temperatures. The present decomposition study on ozone permits its usage as a thermal source for O-atoms allowing measurements for, O + CH3OC(O)OCH3 → OH + CH3OC(O)OCH2 [A]. Reflected shock tube experiments monitoring the formation and decay of O-atoms were performed on reaction A using mixtures of O3 and CH3OC(O)OCH3, (DMC), in Kr bath gas over the T-range, 862 K ≤ T ≤ 1167 K, and pressure range, 0.15 bar ≤ P ≤ 0.33 bar. A detailed model was used to fit the O-atom temporal p...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    16
    Citations
    NaN
    KQI
    []