Novel synthesis and electrochemical investigations of ZnO/C composites for lithium-ion batteries

2021 
For the first time, ZnO/C composites were synthesized using zinc glycerolate as a precursor through one-step calcination under a nitrogen atmosphere. The effect of the heat treatment conditions on the structure, composition, morphology as well as on the electrochemical properties regarding application in lithium-ion batteries are investigated. The products obtained by calcination of the precursor in nitrogen at 400—800 °C consist of zinc oxide nanoparticles and amorphous carbon that is in-situ generated from organic components of the glycerolate precursor. When used as anode material for lithium-ion batteries, the as-prepared ZnO/C composite synthesized at a calcination temperature of 700 °C delivers initial discharge and charge capacities of 1061 and 671 mAh g−1 at a current rate of 100 mA g−1 and hence 1.5 times more than bare ZnO, which reaches only 749/439 mAh g−1. The native carbon improves the conductivity, allowing efficient electronic conductivity and Li-ion diffusion. By means of ex-situ XRD studies a two-step storage mechanism is proven.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    1
    Citations
    NaN
    KQI
    []