Enhancing carrier flux for efficient drug delivery in cancer tissues

2021 
Abstract Ultrasound focused toward tumours in the presence of circulating microbubbles improves the delivery of drug-loaded nanoparticles and therapeutic outcomes, however, the efficacy varies among the different properties and conditions of the tumours. Therefore, there is a need to optimise the ultrasound parameters and determine the properties of the tumour tissue, important for the successful delivery of nanoparticles. Here, we propose a mesoscopic model considering the presence of entropic forces to explain the ultrasound-enhanced transport of nanoparticles across the capillary wall and through the interstitium of tumours. The nanoparticles move through channels of variable shape whose irregularities can be assimilated to barriers of entropic nature that the nanoparticles must overcome to reach their targets. The model assumes that focused ultrasound and circulating microbubbles cause the capillary wall to oscillate thereby changing the width of transcapillary and interstitial channels. Our analysis provides values for the penetration distances of nanoparticles into the interstitium that are in agreement with experimental results. We found that the penetration increased significantly with increasing acoustic intensity as well as tissue elasticity, which means softer and more deformable tissue (Young modulus lower than 50kPa). Whereas porosity of the tissue and pulse repetition frequency of the ultrasound had less impact on the penetration length. We also considered that nanoparticles can be absorbed into cells and to extracellular matrix constituents, finding that the penetration length is increased when there is a low absorbance coefficient of the nanoparticles compared to their diffusion coefficient (close to 0.2). The model can be used to predict which tumour types in terms of elasticity will successfully deliver nanoparticles into the interstitium. It can also be used to predict the penetration distance into the interstitium of nanoparticles with various sizes and the ultrasound intensity needed for the efficient distribution of the nanoparticles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    0
    Citations
    NaN
    KQI
    []