Dynamic Measurement of Nanoflows: Realization of anOptofluidic Flow Meter to the Nanoliter-per-Minute Scale

2019 
The ultimate performance of flow-based measurements in microfluidic systems is currently limited by their accuracy at the nanoliter-per-minute scale. Improving such measurements (especially in contexts that require continuous monitoring) is challenging because of constraints associated with shrinking system geometries and limitations imposed by making precise measurements of smaller quantities in real time. A particularly interesting limit is the relative uncertainty as flow approaches zero, which diverges for most measurement methods. To address these problems, we have developed an optofluidic measurement system that can deliver and record light in a precise interrogation region of a microfluidic channel. The system utilizes photobleaching of fluorophore dyes in the bulk flow and can identify zero flow to better than 1 nL/min absolute accuracy. The technique also provides an independent method for determining nonzero flow rates based on a robust scaling relationship between the fluorescence emission and ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    7
    Citations
    NaN
    KQI
    []