Comparing PET and MRI Biomarkers Predicting Cognitive Decline in Preclinical Alzheimer Disease.

2021 
Objective: To compare how structural MRI, Fluorodeoxyglucose (FDG), and Flortaucipir (FTP) PET signal predict cognitive decline in high-amyloid versus low-amyloid participants with the goal of determining which biomarker combination would result in the highest increase of statistical power for prevention trials. Methods: In this prospective cohort study, we analyzed data from clinically-normal adults from the Harvard Aging Brain Study with MRI, FDG, FTP, and PiB-PET acquired within a year, and prospective cognitive evaluations over a mean three-year follow-up. We focused analyses on pre-defined regions-of-interest: inferior temporal, isthmus cingulate, hippocampus, and entorhinal cortex. Cognition was assessed using the Preclinical Alzheimer’s Cognitive Composite (PACC5). We evaluated the association between biomarkers and cognitive decline using linear-mixed-effect models with random intercepts and slopes, adjusting for demographics. We generated power curves simulating prevention trials. Results: Data from 131 participants [52 females, 73.98±8.29 years old] were analyzed in the study. In separate models, most biomarkers had a closer association with cognitive decline in the high-PiB compared to the low-PiB participants. A backward stepwise regression including all biomarkers demonstrated that only neocortical PiB, entorhinal FTP, and entorhinal FDG were independent predictors of subsequent cognitive decline. Power analyses revealed that using both high-PiB and low entorhinal FDG as inclusion criteria reduced 3-fold the number of participants needed in a hypothetical trial compared to using only high-PiB. Discussion: In preclinical Alzheimer’s disease, entorhinal hypometabolism is a strong and independent predictor of subsequent cognitive decline, making FDG a potentially useful biomarker to increase power in clinical trials. Classification of Evidence: This study provides Class II evidence that in people with preclinical Alzheimer’s disease, entorhinal hypometabolism identified by FDG-PET is predictive of subsequent cognitive decline.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    1
    Citations
    NaN
    KQI
    []