Influencing Factors on Strength of Waste Rock Tailing Cemented Backfill

2020 
Tailing cement filling is an important development direction in mine filling, as it is a green and environmentally friendly method for efficiently treating solid waste in mines. Adding a certain amount of waste rock can effectively improve the backfill strength and better meet the filling strength requirements. To address the use of waste rock tailings in cemented filling materials, a uniaxial compression test was carried out on backfills with different cement/sand ratios and waste rock contents, and the influence of the cement/sand ratio and waste rock content on the strength of the backfill was studied. This study found that when the waste rock content is certain, the strength of the backfill increases with the increase in the cement/sand ratio, and the increase in strength slows with the increase in the cement/sand ratio until the strength of the backfill reaches a limit and no longer increases. When the cement/sand ratio is constant, the strength of the backfill first increases and then decreases as the waste rock content increases. When the cement content is constant, the addition of a certain amount of waste rock reduces the specific surface area of the solid materials in the backfill, increases the amount of cement per unit area, and improves the strength of the backfill. When the waste rock content is too high, due to the large particle size of the waste rock, the tailings cannot completely wrap around the waste rock, resulting in a weakening of the cement in the backfill, which reduces the strength of the backfill. This study found that the waste rock content and the cement/sand ratio in the backfill have a significant impact on backfill damage. The damage is mainly caused by insufficient cement strength. The presence of waste rock will change the original direction of crack propagation, resulting in more crack bifurcation, and the form of the destruction surface on the backfill is complicated and diverse.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    1
    Citations
    NaN
    KQI
    []