Target and double spin asymmetries of deeply virtual $\pi^0$ production with a longitudinally polarized proton target and CLAS

2017 
The target and double spin asymmetries of the exclusive pseudoscalar channel $\vec e\vec p\to ep\pi^0$ were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of $Q^2$, $x_B$, $-t$ and $\phi$. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs $\tilde{H}_T$ and $E_T$, and complement previous measurements of unpolarized structure functions sensitive to the GPDs $H_T$ and $\bar E_T$. These data provide necessary constraints for chiral-odd GPD parametrizations and will strongly influence existing theoretical handbag models.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    22
    Citations
    NaN
    KQI
    []