Scaling silicon photonic switch fabrics for data center interconnection networks

2015 
With the rapidly increasing aggregate bandwidth requirements of data centers there is a growing interest in the insertion of optically interconnected networks with high-radix transparent optical switch fabrics. Silicon photonics is a particularly promising and applicable technology due to its small footprint, CMOS compatibility, high bandwidth density, and the potential for nanosecond scale dynamic connectivity. In this paper we analyze the feasibility of building silicon photonic microring based switch fabrics for data center scale optical interconnection networks. We evaluate the scalability of a microring based switch fabric for WDM signals. Critical parameters including crosstalk, insertion loss and switching speed are analyzed, and their sensitivity with respect to device parameters is examined. We show that optimization of physical layer parameters can reduce crosstalk and increase switch fabric scalability. Our analysis indicates that with current state-of-the-art devices, a high radix 128 × 128 silicon photonic single chip switch fabric with tolerable power penalty is feasible. The applicability of silicon photonic microrings for data center switching is further supported via review of microring operations and control demonstrations. The challenges and opportunities for this technology platform are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    101
    Citations
    NaN
    KQI
    []