High-Tc superconducting detector for highly-sensitive microwave magnetometry

2019 
We have fabricated arrays of High-Tc Superconducting Quantum Interference Devices (SQUIDs) with randomly distributed loop sizes as sensitive detectors for Radio Frequency (RF) waves. These subwavelength size devices known as Superconducting Quantum Interference Filters (SQIFs) detect the magnetic component of the electromagnetic field. We used a scalable ion irradiation technique to pattern the circuits and engineer the Josephson junctions needed to make SQUIDs. Here, we report on a 300 SQUID series array with the loop area ranging from 6 to 60 μm2, folded in a meander line covering a 3.5 mm × 120 μm substrate area, made out of a 150 nm thick YBa2Cu3O7 film. Operating at a temperature of T = 66 K in an unshielded magnetic environment under low DC bias current (I = 60 μA) and a DC magnetic field (B = 3 μT), this SQIF can detect a magnetic field of a few picoteslas at a frequency of 1.125 GHz, which corresponds to a sensitivity of a few hundreds of fT / Hz and shows a linear response over 7 decades in RF power. This work is a promising approach for the realization of low dissipative subwavelength gigahertz magnetometers.We have fabricated arrays of High-Tc Superconducting Quantum Interference Devices (SQUIDs) with randomly distributed loop sizes as sensitive detectors for Radio Frequency (RF) waves. These subwavelength size devices known as Superconducting Quantum Interference Filters (SQIFs) detect the magnetic component of the electromagnetic field. We used a scalable ion irradiation technique to pattern the circuits and engineer the Josephson junctions needed to make SQUIDs. Here, we report on a 300 SQUID series array with the loop area ranging from 6 to 60 μm2, folded in a meander line covering a 3.5 mm × 120 μm substrate area, made out of a 150 nm thick YBa2Cu3O7 film. Operating at a temperature of T = 66 K in an unshielded magnetic environment under low DC bias current (I = 60 μA) and a DC magnetic field (B = 3 μT), this SQIF can detect a magnetic field of a few picoteslas at a frequency of 1.125 GHz, which corresponds to a sensitivity of a few hundreds of fT / Hz and shows a linear response over 7 decades in ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    4
    Citations
    NaN
    KQI
    []