Mathematical and Ex Vivo Thermal Modeling for Renal Tumor Radiofrequency Ablation with Pyeloperfusion

2015 
Abstract Background and Purpose: Radiofrequency ablation (RFA) is an effective technique for the treatment of patients with small renal tumors, although it is often limited to tumors at least 2 cm from the renal pelvis or ureter. Retrograde pyeloperfusion (PPF) of the pelvis with cold saline during RFA may protect the pelvis and ureter. We designed a mathematical and ex vivo model of RFA to investigate the effects of PPF. Methods: Our theoretical model uses heat transfer principles simplifying the RFA probe to a heat-emitting cylinder within a material. In the ex vivo model, an RFA probe was placed 18 mm from the pelvis in porcine kidneys and with temperature probes on either side of the RFA probe. Control trials with no PPF were compared with either cold saline (2°C), warm saline (38°C), or antifreeze (−20°C) pumped into the renal calix at a rate of 60 mL/min. Ablated volumes were measured and confirmed histologically. Results: The average steady state temperatures at each probe were highest with no PPF,...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    3
    Citations
    NaN
    KQI
    []