High sensitivity detection of coronavirus SARS-CoV-2 using multiplex PCR and a multiplex-PCR-based metagenomic method

2020 
Many detection methods have been used or reported for the diagnosis and/or surveillance of SARS-CoV-2. Among them, reverse transcription polymerase chain reaction (RT-PCR) is the most sensitive, claiming detection of about 5 copies of viruses. However, it has been reported that only 47-59% of the positive cases were identified by RT-PCR, probably due to loss or degradation of virus RNA in the sampling process, or even mutation of the virus genome. Therefore, developing highly sensitive methods is imperative to ensure robust detection capabilities. With the goal of improving sensitivity and accommodate various application settings, we developed a multiplex-PCR-based method comprised of 172 pairs of specific primers, and demonstrate its efficiency to detect SARS-CoV-2 at low copy numbers. The assay produces clean characteristic target peaks of defined sizes, which allows for direct identification of positives by electrophoresis. In addition, optional sequencing can provide further confirmation as well as phylogenetic information of the identified virus(es) for specific strain discrimination, which will be of paramount importance for surveillance purposes that represent a global health imperative. Finally, we also developed in parallel and tested a multiplex-PCR-based metagenomic method that is amenable to detect SARS-CoV-2, with the additional benefit of its potential for uncovering mutational diversity and novel pathogens at low sequencing depth.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    11
    Citations
    NaN
    KQI
    []