Doped Silicon Nanocrystal Plasmonics

2017 
Doped semiconductor nanocrystals represent an exciting new type of plasmonic material with optical resonances in the infrared. Unlike noble metal nanoparticles, the plasmon resonance can be tuned by altering the doping density. Recently, it has been shown that silicon nanocrystals can be doped using phosphorus and boron resulting in highly tunable infrared plasmon resonances. Due to the band structure of silicon, doping with phosphorus contributes light (transverse) and heavy (longitudinal) electrons, while boron contributes light and heavy holes and one would expect two distinct plasmon branches. Here we develop a classical hybridization theory and a full quantum mechanical TDLDA approach for two-component carrier plasmas and show that the interaction between the two plasmon branches results in strongly hybridized plasmon modes. The antibonding mode where the two components move in phase is bright and depends sensitively on the doping densities. The low energy bonding mode with opposite charge alignment ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    31
    Citations
    NaN
    KQI
    []