Breaking of Henry’s law for sulfide liquid–basaltic melt partitioning of Pt and Pd

2021 
Platinum group elements are invaluable tracers for planetary accretion and differentiation and the formation of PGE sulfide deposits. Previous laboratory determinations of the sulfide liquid–basaltic melt partition coefficients of PGE ( $${D}_{PGE}^{SL/SM}$$ ) yielded values of 102–109, and values of >105 have been accepted by the geochemical and cosmochemical society. Here we perform measurements of $${D}_{Pt,\,Pd}^{SL/SM}$$ at 1 GPa and 1,400 °C, and find that $${D}_{Pt,\,Pd}^{SL/SM}$$ increase respectively from 3,500 to 3.5 × 105 and 1,800 to 7 × 105, as the Pt and Pd concentration in the sulfide liquid increases from 60 to 21,000 ppm and 26 to 7,000 ppm, respectively, implying non-Henrian behavior of the Pt and Pd partitioning. The use of $${D}_{Pt,\,Pd}^{SL/SM}$$ values of 2,000–6,000 well explains the Pt and Pd systematics of Earth’s mantle peridotites and mid-ocean ridge basalts. Our findings suggest that the behavior of PGE needs to be reevaluated when using them to trace planetary magmatic processes. Platinum group elements are used as tracers for planetary and PGE sulfide deposit formation. Here, the authors, through the measurements of Pt and Pd partition coefficients between sulfide liquid and basaltic melt, demonstrate that the partitioning of Pt and Pd does not obey Henry’s law.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    0
    Citations
    NaN
    KQI
    []