Evaluation of radiation dose and positioning accuracy on X-ray volume imaging system for image-guided radiotherapy

2008 
Abstract Linear accelerators equipped with X-ray volumetric cone-beam Imaging (XVI) system enable verification of location of patients and displacement of tumors for image-guided radiotherapy (IGRT). The objective of this study is to evaluate the positioning accuracy using the XVI system for image-guided patient setup and to establish a lower-dose imaging protocol without sacrificing positioning accuracy for routine treatment courses. Several low-dose imaging protocols are proposed by modifying tube voltage from 120 to 100 kV and lowering tube current from 40 to 10 mA. The positioning accuracy of both bone and gray value registration methods provided by XVI system were also evaluated. Phantom study revealed that the gray value algorithm was more accurate than the bone algorithm in position and registration. However, both translational and rotational accuracies were less than 0.15 mm and 0.8 ° at all dimensions, which were considered negligible in clinical applications. In addition, the lower-dose protocol (100 kV, 10 mA) produced relative much less radiation dose compared to the default CBCT protocol in the XVI system. In conclusion, our proposed lower-dose protocol results in significant radiation dose reduction without compromising positioning accuracy and may have the potential to be adopted for clinical usage in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    1
    Citations
    NaN
    KQI
    []