Strongly correlated barriers to rotation from parametric two-electron reduced-density-matrix methods in application to the isomerization of diazene

2012 
Recently, parameterization of the two-electron reduced density matrix (2-RDM) has made possible the determination of electronic energies with greater accuracy and lower cost than traditional electron-pair theories including coupled cluster with single and double excitations [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)]. We examine the method's performance for strongly correlated barriers to rotation; in particular, we study two distinct pathways in the isomerization of diazene (N2H2) from cis to trans: (i) a strongly correlated rotational pathway and (ii) a moderately correlated inversion pathway. While single reference wavefunction methods predict that the rotational barrier is higher than the inversional barrier, the parametric 2-RDM method predicts that the rotational barrier is lower than the inversional barrier by 3.1 kcal/mol in the extrapolated basis set limit. The parametric 2-RDM results are in agreement with those from multireference methods including multireference perturbation theory ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    28
    Citations
    NaN
    KQI
    []