Refractory metal nuggets within presolar graphite: First condensates from a circumstellar environment

2013 
Transmission electron microscope (TEM) investigations have revealed Os, Ru, Mo-rich refractory metal nuggets within four different presolar graphites, from both the high-density (HD) Murchison (MUR) and low-density (LD) Orgueil (ORG) fractions. Microstructural and chemical data suggest that these are direct condensates from the gas, rather than forming later by exsolution. The presolar refractory metal nugget (pRMN) compositions are variable (e.g., from 8 < Os atom% < 77), but follow the same chemical fractionation trends as isolated refractory metal nuggets (mRMNs) previously found in meteorites (Berg et al. 2009). From these compositions one can infer a temperature of last equilibration with the gas of 1405-1810 K (e.g., Berg et al. (2009) at approximately 100 dyne cm 2 pressure), which implies that the host graphites form over roughly the same range (in agreement with predictions) and that the pRMNs are chemically isolated from the gas when captured by graphite. Further, the pRMN compositions give evidence that HD graphites form at a higher T than LD ones. Chemical and phase similarities with the isolated mRMNs suggest that the mRMNs also condense directly from a gas, although from the early solar nebula rather than a presolar environment. Although the pRMNs themselves are too small for detection of isotopic anomalies, NanoSIMS isotopic measurements of their host graphites confirm a presolar origin for the assemblages. The two pRMN-containing LD graphites show evidence of a supernova (SN) origin, whereas the stellar origins of the pRMNs in HD graphite are unclear, because only less-diagnostic 12 C enrichments are detectable (as is commonly true for HD graphites).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    21
    Citations
    NaN
    KQI
    []