The Influence of Antimicrobial Photodynamic Therapy Using Indocyanine Green-loaded Chitosan Nanoparticles Versus Biofilm Formation-related Gene Expression of Aggregatibacter Actinomycetemcomitans

2019 
Objectives: Eradication of Aggregatibacter actinomycetemcomitans (A. actionmycetemcomitans), as an opportunistic periodontopathogen, and inhibition of its virulence factor expression require a new adjunctive therapeutic method. In this study, we accessed the expression level of rcpA gene, as a virulence factor associated with A. actinomycetemcomitans biofilm formation, following treatment by antimicrobial photodynamic therapy (aPDT) using indocyanine green (ICG) doped with chitosan nanoparticles (CS-NPs@ICG). Materials and Methods: CS-NPs@ICG was synthesized and examined using scanning electron microscopy (SEM). A. actinomycetemcomitans ATCC 33384 strain was treated with CS-NPs@ICG, as a photosensitizer, which was excited with a diode laser at the wavelength of 810 nm with the energy density of 31.2 J/cm2. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine the changes in rcpA gene expression level. Results: Synthetized CS-NPs@ICG was confirmed via SEM. The results revealed that CS-NPs@ICG-mediated aPDT could significantly decrease rcpA gene expression to 13.2-fold (P 0.05). Conclusion: aPDT with CS-NPs@ICG leads to a decrease of the virulence factor of A. actinomycetemcomitans and can be used as an adjunct to routine treatments for successful periodontal therapy in vivo.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    4
    Citations
    NaN
    KQI
    []