AsnB Is Involved in Natural Resistance of Mycobacterium smegmatis to Multiple Drugs

2006 
Mycobacteria are naturally resistant to most common antibiotics and chemotherapeutic agents. The underlying molecular mechanisms are not fully understood. In this paper, we describe a hypersensitive mutant of Mycobacterium smegmatis, MS 2-39, which was isolated by screening for transposon insertion mutants of M. smegmatis mc2155 that exhibit increased sensitivity to rifampin, erythromycin, or novobiocin. The mutant MS 2-39 exhibited increased sensitivity to all three of the above mentioned antibiotics as well as fusidic acid, but its sensitivity to other antibiotics, including isoniazid, ethambutol, streptomycin, chloramphenicol, norfloxacin, tetracycline, and β-lactams, remained unchanged. Uptake experiment with hydrophobic agents and cell wall lipid analysis suggest that the mutant cell wall is normal. The transposon insertion was localized within the asnB gene, which is predicted to encode a glutamine-dependent asparagine synthetase. Transformation of the mutant with wild-type asnB of mc2155 or asnB of Mycobacterium tuberculosis complemented the drug sensitivity phenotype. These results suggest that AsnB plays a role in the natural resistance of mycobacteria.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    33
    Citations
    NaN
    KQI
    []