Evaluation of the PTW microDiamond in edge-on orientation for dosimetry in small fields.

2020 
PURPOSE: The PTW microDiamond has an enhanced spatial resolution when operated in an edge-on orientation but is not typically utilized in this orientation due to the specifications of the IAEA TRS-483 code of practice for small field dosimetry. In this work the suitability of an edge-on orientation and advantages over the recommended face-on orientation will be presented. METHODS: The PTW microDiamond in both orientations was compared on a Varian TrueBeam linac for: machine output factor (OF), percentage depth dose (PDD), and beam profile measurements from 10 × 10 cm2 to a 0.5 × 0.5 cm2 field size for 6X and 6FFF beam energies in a water tank. A quantification of the stem effect was performed in edge-on orientation along with tissue to phantom ratio (TPR) measurements. An extensive angular dependence study for the two orientations was also undertaken within two custom PMMA plastic cylindrical phantoms. RESULTS: The OF of the PTW microDiamond in both orientations agrees within 1% down to the 2 × 2 cm2 field size. The edge-on orientation overresponds in the build-up region but provides improved penumbra and has a maximum observed stem effect of 1%. In the edge-on orientation there is an angular independent response with a maximum of 2% variation down to a 2 × 2 cm2 field. The PTW microDiamond in edge-on orientation for TPR measurements agreed to the CC01 ionization chamber within 1% for all field sizes. CONCLUSIONS: The microDiamond was shown to be suitable for small field dosimetry when operated in edge-on orientation. When edge-on, a significantly reduced angular dependence is observed with no significant stem effect, making it a more versatile QA instrument for rotational delivery techniques.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    7
    Citations
    NaN
    KQI
    []