Amélioration de la biodégradation du biphényle par Rhodococcus erythropolis t902.1 en présence de Fe2O3 et de nanoparticules de fer encapsulées dans un xérogel de silice

2015 
[en] In this work, the effect of iron oxide particles Fe2O3 and iron nanoparticles encapsulated in a porous silica matrix (xerogel Fe/SiO2) was investigated on biphenyl biodegradation by the strain Rhodococcus erythropolis T902.1. After 18 days of incubation biodegradation yields of 75% and 85% were achieved respectively in presence of non-autoclaved or autoclaved xerogel Fe/SiO2 at 10-5 M iron. These results are 42 and 60 % higher than in standard conditions without nanoparticles. They suggest that the autoclave procedure lead to the release of some iron less anchored in the silica matrix. This study highlights that siderophore production by Rhodococcus erythropolis T902.1 would be related to the presence of iron nanoparticles in the culture. It suggests that the production of these strong chelating compounds decreases with increase of iron release from xerogel Fe/SiO2. Moreover, most of the surfactants synthesized by Rhodococcus erythropolis T902.1 which are glycolipids containing trehalose (hexose), would be linked to cell surface and not excreted in the culture medium; the biomass hexose content also increased by 85% in presence of iron nanoparticles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []