Comparative Study on Multiway Enhanced Bio- and Phytoremediation of Aged Petroleum-Contaminated Soil

2020 
Bioremediation and phytoremediation of soil polluted with petroleum hydrocarbons (PHs) are an effective and eco-friendly alternative to physicochemical methods of soil decontamination. These techniques can be supported by the addition of effective strains and/or surface-active compounds. However, to obtain maximum efficacy of bioremediation, the interactions that occur between the microorganisms, enhancement factors and plants need to be studied. Our study aimed to investigate the removal of petroleum hydrocarbons from an aged and highly polluted soil (hydrocarbon content about 2.5%) using multiway enhanced bio- and phytoremediation. For this purpose, 10 enhanced experimental groups were compared to two untreated controls. Among the enhanced experimental groups, the bio- and phytoremediation processes were supported by the endophytic strain Rhodococcus erythropolis CDEL254. This bacterial strain has several plant growth-promoting traits and can degrade petroleum hydrocarbons and produce biosurfactants. Additionally, a rhamnolipid solution produced by Pseudomonas aeruginosa was used to support the total petroleum hydrocarbon loss from soil. After 112 days of incubation, the highest PH removal (31.1%) was observed in soil planted with ryegrass (Lolium perenne L. cv. Pearlgreen) treated with living cells of the CDEL254 strain and rhamnolipid solution. For non-planted experimental groups, the highest PH loss (26.1%) was detected for soil treated with heat-inactivated CDEL254 cells and a rhamnolipid solution. In general, the differences in the efficacy of the 10 experimental groups supported by plants, live/dead cells of the strain tested and rhamnolipid were not statistically significant. However, each of these groups was significantly more effective than the appropriate control groups. The PH loss in untreated (natural attenuation) and soils that underwent phytoremediation reached a value of 14.2% and 17.4%, respectively. Even though the CDEL254 strain colonized plant tissues and showed high survival in soil, its introduction did not significantly increase PH loss compared to systems treated with dead biomass. These results indicate that the development of effective biological techniques requires a customized approach to the polluted site and effective optimization of the methods used.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    3
    Citations
    NaN
    KQI
    []