Bacteriosomes as a Promising Tool in Biomedical Applications: Immunotherapy and Drug Delivery.

2020 
Bacteriosomes are a member of cell-derived vesicles that are proposed as promising tools in diagnosis, therapy, and drug delivery. These vesicles could be derived from a virus, bacterial cells, and animal cells. Biotechnology techniques were used in bioengineering of cell-derived vesicles in vitro, and in vivo. Bacterial vesicles such as bacterial cells, bacterial ghost, or bacteriosomes are vesicular structures derived from bacteria produced by manipulation of bacterial cells by chemical agents or gene-mediated lysis. Subsequently, bacterial vesicles (bacteriosomes) are non-living, non-denatured bacterial cell envelopes free of the cytoplasm and genetic materials. Gram-negative and Gram-positive bacteria are exploited in the production of bacteriosomes. Bacteriosomes have instinct organs, tissues, cells, as well as subcellular tropism. Moreover, bacteriosomes might be used as immunotherapy and/or drug delivery shuttles. They could act as cargoes for the delivery of small drugs, large therapeutics, and nanoparticles to the specific location. Furthermore, bacteriosomes have nature endosomal escaping ability, hence they could traffic different bio-membranes by endocytosis mechanisms. Therefore, bacterial-derived vesicles could be used in therapy and development of an innovative drug delivery systems. Consequently, utilizing bacteriosomes as drug cargoes enhances the delivery and efficacy of administered therapeutic agents. This review highlighted bacteriosomes in terms of source, engineering, characterization, applications, and limitations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    91
    References
    5
    Citations
    NaN
    KQI
    []