Raman scattering from the bulk inactive out–of–plane $${{\bf{B}}}_{{\bf{2}}{\bf{g}}}^{{\bf{1}}}$$ B 2 g 1 mode in few–layer MoTe 2

2018 
We report a study of Raman scattering in few-layer MoTe2 focused on high-frequency out-of-plane vibrational modes near 291 cm−1 which are associated with the bulk-inactive $${{\rm{B}}}_{2{\rm{g}}}^{1}$$ B 2 g 1 mode. Our temperature-dependent measurements reveal a double peak structure of the feature related to these modes in the Raman scattering spectra of 4- and 5-layer MoTe2. In accordance with literature data, the doublet’s lower- and higher-energy components are ascribed to the Raman-active A1g/ $${{\bf{A}}{\boldsymbol{^{\prime} }}}_{{\bf{1}}}$$ A ′ 1 vibrations involving, respectively, only the inner and surface layers. We demonstrate a strong enhancement of the inner mode’s intensity at low temperature for 1.91 eV and 1.96 eV laser light excitation which suggests a resonant character of the Raman scattering processes probed under such conditions. A resonance of the laser light with a singularity of the electronic density of states at the M point of the MoTe2 Brillouin zone is proposed to be responsible for the observed effects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    3
    Citations
    NaN
    KQI
    []