Mitochondrial Quality Control in Cerebral Ischemia-Reperfusion Injury.

2021 
Ischemic stroke is one of the leading causes of death and also a major cause of adult disability worldwide. Revascularization via reperfusion therapy is currently a standard clinical procedure for patients with ischemic stroke. Although the restoration of blood flow (reperfusion) is critical for the salvage of ischemic tissue, reperfusion can also, paradoxically, exacerbate neuronal damage through a series of cellular alterations. Among the various theories postulated for ischemia/reperfusion (I/R) injury, including the burst generation of reactive oxygen species (ROS), activation of autophagy, and release of apoptotic factors, mitochondrial dysfunction has been proposed to play an essential role in mediating these pathophysiological processes. Therefore, strict regulation of the quality and quantity of mitochondria via mitochondrial quality control is of great importance to avoid the pathological effects of impaired mitochondria on neurons. Furthermore, timely elimination of dysfunctional mitochondria via mitophagy is also crucial to maintain a healthy mitochondrial network, whereas intensive or excessive mitophagy could exacerbate cerebral I/R injury. This review will provide a comprehensive overview of the effect of mitochondrial quality control on cerebral I/R injury and introduce recent advances in the understanding of the possible signaling pathways of mitophagy and potential factors responsible for the double-edged roles of mitophagy in the pathological processes of cerebral I/R injury.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    193
    References
    0
    Citations
    NaN
    KQI
    []