Wild-Type and Mutant HCN Channels in a Tandem Biological-Electronic Cardiac Pacemaker

2006 
Background— Biological pacemakers (BPM) implanted in canine left bundle branch function competitively with electronic pacemakers (EPM). We hypothesized that BPM engineered with the use of mE324A mutant murine HCN2 (mHCN2) genes would improve function over mHCN2 and that BPM/EPM tandems confer advantage over either approach alone. Methods and Results— In cultured neonatal rat myocytes, activation midpoint was −46.9 mV in mE324A versus −66.1 mV in mHCN2 (P<0.05). mE324A manifested a positive shift of voltage dependence of gating kinetics of activation and deactivation compared with mHCN2 (P<0.05) in myocytes as well as Xenopus oocytes. In intact dogs in complete atrioventricular block, saline (control), mHCN2, or mE324A virus was injected into left bundle branch, and EPM were implanted (VVI 45 bpm). Twenty-four–hour ECGs were monitored for 14 days. With EPM discontinued, there was no difference in duration of overdrive suppression among groups. However, basal heart rates in controls were less than those in ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    117
    Citations
    NaN
    KQI
    []