Epidemiological Characteristics of Tuberculosis and Effects of meteorological factors and air pollutants on Tuberculosis in Shijiazhuang, China: A Distribution Lag Non-Linear Analysis.

2020 
Abstract Background Tuberculosis (TB) is a serious public health problem in China. There is evidence to prove that meteorological factors and exposure to air pollutants have a certain impact on TB. But the evidence of this relationship is insufficient, and the conclusions are inconsistent. Methods Descriptive epidemiological methods were used to describe the distribution characteristics of TB in Shijiazhuang in the past five years. Through the generalized linear regression model (GLM) and the generalized additive model (GAM), the risk factors that affect the incidence of TB are screened. A combination of GLM and distribution lag nonlinear model (DLNM) was used to evaluate the lag effect of environmental factors on the TB. Results were tested for robustness by sensitivity analysis. Results The incidence of TB in Shijiazhuang showed a downward trend year by year, with seasonality and periodicity. Every 10 μg/m3 of PM10 changes, the RR distribution is bimodal. The first peak of RR occurs on the second day of lag (RR = 1.00166, 95% CI: 1.00023, 1.00390); the second risk period starts from 13th day of lag and peaks on15th day (RR = 1.00209, 95% CI: 1.00076, 1.00341), both of which are statistically significant. The cumulative effect of increasing 10 μg/m3 showed a similar bimodal distribution. Time zones where the RR makes sense are days 4-6 and 13-20. RR peaked on the 18th day (RR = 1.02239, 95% CI: 1.00623, 1.03882). The RR has a linear relationship with the concentration. Under the same concentration, the RR peaks within 15-20 days. Conclusion: TB in Shijiazhuang City showed a downward trend year by year, with obvious seasonal fluctuations. The air pollutant PM10 increases the risk of TB. The development of TB has a short-term lag and cumulative lag effects. We should focus on protecting susceptible people from TB in spring and autumn, and strengthen the monitoring and emission management of PM10 in the atmosphere.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    1
    Citations
    NaN
    KQI
    []